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ABSTRACT

Major advances have been made towards the World’s first system for the rapid,
automated and non-destructive determination of internal infestation within kernels of
post-harvest cereals.  The system will be based on the analysis of images of the
kernels recorded in the near infrared (NIR) region by machine vision using highly
innovative computational algorithms.  These algorithms are notably more effective at
analysing the images than human inspection as well as being non-subjective and
operating at constant efficiency.  Laboratory tests suggest that the probability of
finding a 0.5% infestation of grain weevils in a batch of cereal could be around 97%.
The speed of processing the images has been markedly improved such that analysis of
a 3 kg sample within 3 minutes should be possible.  The discovery that the method
works with images recorded in the very near infrared region, at 981 nm, means that it
will be possible to use a cheaper camera which is less subject to drift than had
originally been thought.  The method works by detecting bright patches on infested
kernels which are highly correlated with the present or past location of the insect and
probably result from loss of starch due to insect feeding.  Repeated scanning of
infested kernels suggests that the NIR effect becomes detectable around 2-3 weeks
after egg laying.  This is only shortly after the infestation becomes detectable by the
much more expensive X-ray method.  The NIR method has been optimised using
wheat of Mercia variety but preliminary tests with other varieties of different
reflective appearance suggest that it has general applicability to wheat.  The method
could share the same sample presentation arrangement as the machine vision system
being developed to detect contamination external to cereal kernels but the cameras
and software analysis will need to remain separate.  Now that these laboratory tests
have proved the potential of the method, the next steps will be to confirm that it will
work with cereals other than wheat and infestations other than the grain weevil, and to
construct a prototype apparatus to test under practical conditions.  The implications of
this project are that, provided the advances described here are exploited, the UK
cereal trade will be able to benefit, in particular for both long term storage and export,
by being the first to have at its disposal a system which can confirm the high quality
of UK grain and which will operate at an acceptable speed and provide efficient
results at an affordable cost.
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1. INTRODUCTION

Previous collaborative work between CSL and RHUL, funded by the HGCA, has
resulted in significant progress towards the first ever method for the rapid, automated
detection of the major foreign object contaminants of cereals (Chambers et al., 1997a;
1997b; 1998).  The developed method is presently at laboratory stage.  Images of
samples of wheat are recorded in the visible region using a low-cost charge-coupled
device (CCD) camera and lighting system.  A package of highly innovative purpose-
written computer algorithms automatically detects rodent droppings, ergot, adult and
larval insects external to grain kernels (Davies et al., 1998a; 1998b; 1999).  This
laboratory model provides the proof of concept and detailed specification from which
to construct a completely integrated prototype device.  It is expected that this device
will be capable of scanning and classifying the contents of a 3 kg batch of grain in a
total time of just 3 minutes.  No existing device has a performance comparable to that
expected from the system to be developed from this work.  However, the detection of
hidden infestation, i.e. kernels infested internally with insects, is currently not
possible with this system.  This would be particularly valuable for long term storage
and for export, where it would enhance UK competitiveness in international trade.

Since the first report of the ability to detect internal infestation using near-infrared
(NIR) spectroscopy (Chambers et al., 1993), which formed part of previous work
funded by the HGCA (Chambers et al., 1994), work has been directed to establishing
how this potentially valuable discovery could be exploited for practical benefit.
Detailed understanding of the spectroscopic response (Ridgway and Chambers, 1996)
led to the significant advance that internal infestation could be detected by
measurement at just two wavelengths rather than a much wider spectral region
(Chambers and Ridgway, 1996).  This suggested that detection might be possible by
NIR imaging, which was demonstrated as part of the work funded by HGCA on the
detection of contaminants (Chambers et al., 1998).

Wheat kernels containing larvae of the grain weevil, Sitophilus granarius (L.), were
discovered to exhibit large and very distinct light patches when imaged at certain
carefully selected NIR wavelengths.  Uninfested kernels present in the same image
appeared uniformly dark.  The contrast between infested and clean kernels was
greatest in the composite image (1202 nm - 1300 nm), obtained from separate images
of the sample at each wavelength.  However, the use of images at just one wavelength
(1202 nm) gave an almost equally good result.  Limiting the number of wavelengths
to just one promises to afford a very simple and rapid NIR imaging methodology, by
avoiding the need to switch between filters and subtract one image from another.
This preliminary study (Ridgway and Chambers, 1998) confirmed NIR imaging as a
potential basis for a simple, safe, rapid and inexpensive substitute for more costly
detection by X-ray.  The purpose of the present project was to explore this potential.
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2. OBJECTIVES

The objectives of the present project were to:
a) ensure that NIR images can be analysed automatically by substantially

improving their quality,
b) confirm that there is sufficient information in the NIR images for machine

vision by using human inspection of unknown uninfested and infested kernels,
c) establish how to recognise images of hidden infestation automatically by

constructing computer algorithms,
d) optimise the sensitivity of detection by confirming the origins of the differences

in response from clean and infested kernels, and
e) determine how to incorporate the detection of hidden infestation facility into the

existing machine vision system.

3. GENERAL

Except where stated otherwise, samples were prepared, images recorded and the
quality of the images assessed at CSL, while image analysis was undertaken at
RHUL.  Image analysis uses a number of specific terms.  A glossary of the terms of
principal importance is provided as Appendix A.  Two candidate wavelengths for
insect detection were compared in this study.  The wavelength 1202 nm was that used
in previous, preliminary work.  The alternative wavelength 981 nm was identified
during the present study, as a result of the very near-infrared spectroscopic
investigation (see Section 7).

Materials used in the images
Insects used were grain weevils, Sitophilus granarius (L.).  Wheat used for culturing
was variety Mercia.  Infested wheat kernels contained large, probably final instar,
larvae.  These were identified to developmental stage by visual inspection of X-ray
radiographs.  Uninfested kernels for use as control samples were also obtained by this
method at the same time and from the same culture.  All kernels imaged were thus of
variety Mercia, except where stated otherwise [for part of Experiment (g)].

4. IMPROVEMENTS TO QUALITY OF NIR IMAGES

Preliminary work to optimise image capture methodology at 1202nm
Various different lighting chambers, lighting arrangements and cameras were
investigated in order to optimise the contrast between uninfested and infested kernels
and minimise image noise.  Diffuse lighting chambers consisting of a horizontal or
vertical cylinder were evaluated.  The horizontal chamber design was modelled on
that described by Paulsen and McClure (1986).  Lighting intensities ranging from
200-800W total were investigated.  The criteria by which lighting quality was
assessed included minimising shadow, variability in light intensity across the image
and heating of the sample and camera.  It was found that substituting a lighting
chamber of larger dimensions to that used in the previous project gave images of
similar quality.  This, together with the incorporation of a telephoto lens, helped
reduce the problem of camera over-heating by allowing the lighting sources to be
positioned away from the camera body (Figure 1).
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Cameras tested at 1202 nm included a silicon-detector CCD responsive up to 1300 nm
(Hamamatsu Photonics), an indium gallium arsenide-detector CCD responsive up to
1700 nm (SU128-1.1.7RT, Sensors Unlimited) and a NIR vidicon tube camera
responsive up to 1800 nm (Find-R-Scope FJW85400A, FJW Optical Systems).
Image quality was assessed by considering signal-to-noise ratio (the ability to
distinguish features of interest from irrelevant artefacts), resolution (image clarity)
and sample size.  Attempts to improve significantly on the quality of the images
obtained at 1202 nm in the previous project (Ridgway and Chambers, 1998) were
unsuccessful.  Use of the horizontal cylinder-based lighting chamber did not remove
grain shadow and did not deliver sufficient incident light to the sample.  The
Hamamatsu Photonics silicon-detector CCD was found to be insufficiently sensitive
at 1202 nm to allow images of grain to be recorded.  The indium gallium arsenide-
detector CCD, included as a model for linescan cameras, was found to provide
insufficient detail in the captured image.

Images recorded
Once the preliminary work to select the most appropriate sample illumination and
image capture methods had been completed, a series of images was recorded to allow
preliminary investigation of the machine vision process, Experiment (a).  Images were
recorded at 1202 nm using the NIR vidicon tube camera (Find-R-Scope FJW85400A,
FJW Optical Systems) at a resolution of 256 x 256 pixels.  The series comprised 24
images obtained from nine sets of three infested kernels and nine sets of three
uninfested kernels, each set being imaged separately on a light background and a dark
background, with and without background subtraction.  Summary details of each
Experiment are presented in Table 1.  An example set of images from one sample is
given in Figure 2.

Image analysis by machine vision: early conclusions about the process
Investigation of the 24 images from Experiment (a) proved very formative for the
Machine Vision part of the work.  In these and certain later experiments, it proved
useful to gather the images twice, once using light and once using dark backgrounds.
While the light backgrounds are valuable when enhancing the images for human
observation, the dark backgrounds are needed so that the boundaries of the grains can
be readily determined automatically by computer.  In what follows in the Machine
Vision part of the report, it will always be assumed that the images used have dark
backgrounds.  These images showed that NIR can provide only a very low signal-to-
noise ratio, and that this would make it quite difficult to find how to tackle the internal
infestation problem, let alone to obtain reliable optimised information from the
images.  However, noise was not the only problem.  The natural variability of the
grains in brightness, size and shape also became evident.  In addition, the variability
in the effects of the infesting larvae showed that sensitivity in detection could be
elusive unless some working model of the bright patches due to the larvae could be
developed.  In spite of these difficulties, the small number of images available at this
stage permitted useful degrees of noise elimination, understanding of the grain
intensity profiles, and grain normalisation by grain location, orientation and masking.
It also allowed the development of a potentially useful technique for grain intensity
modelling.

This early work highlighted the natural variability of the grains and the effects of the
infesting larvae: at the time it seemed that the proper way to deal with this problem
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was to make the Machine Vision inspection system highly adaptive, and to use
training techniques to achieve this.  In particular, classifiers would have to be trained
to recognise a range of uninfested and infested intensity profiles, though it was also
recognised that this would be particularly difficult for infested grains, which show
much higher variability than uninfested grains.  Hence it was anticipated that the
classifiers would have to be trained on the uninfested grains, and the limits on the
variability of the latter would have to be measured carefully: the infested grains could
then be recognised as those falling outside the tolerance limits for uninfested grains.
It was imagined that neural networks could be used for classification, though this
possibility was not considered in any detail.  Another possibility was the use of a
procedure which would average the intensity profiles of many grains after rigorous
normalisation for parameters such as position, orientation, size, shape and background
brightness.  Once an idealised model for uninfested grains had been obtained in this
way, it should then be straightforward to determine whether any received grain image
represented an infested grain.  While these ideas were very tentatively framed during
this early stage, the concept of grain modelling was retained throughout the project
and indeed became of central importance to the final solution.

5. INFORMATION IN THE NIR IMAGES

While the preliminary investigation of the machine vision approach was being
undertaken on the images from Experiment (a), a study was conducted to establish the
extent to which internal infestation could be established from such images by human
inspection alone.  This served two purposes: first, to confirm that the images
contained sufficient information for the machine vision process to be worthwhile, and
second, to provide a measure of its success.  By the time this study was undertaken,
the evidence from the spectroscopic investigation (Section 7) was available.  Since
this suggested that it might be advantageous to use a lower wavelength (981 nm) than
that used so far (1202 nm), the former was used for this investigation.

Preliminary work to optimise image capture methodology at 981nm
Two lighting chambers of different height and diameter, together with lighting
intensities ranging from 160-400 W total, were investigated in order to optimise the
contrast between uninfested and infested kernels.  For imaging at 981 nm, consistent
differences between uninfested and infested kernels were not observed using the large
lighting chamber and telephoto lens.  However, an image capture set-up almost
identical to that used in the previous project was found to be effective (Figure 3).

Images recorded
Lighting was from four 40W standard pearl lightbulbs supplied by mains.  Images
were recorded at 981 nm using a silicon-detector CCD camera (Ikegami ICD-42E,
Type F, ½ inch) at a resolution of 256 (height) x 521 (width) pixels.  Materials used in
the images were obtained in the same way as those used in Experiment (a).  In the
first part of this study, Experiment (b), each sample comprised one uninfested and one
infested kernel, positioned such that they were horizontally aligned in the captured
image.  The positions of the infested and uninfested kernels were alternated between
each sample.  One image was recorded for each of 16 pairs of one uninfested and one
infested kernel.  An example image (contrast enhanced) obtained with the optimised
set-up is given in Figure 4, for the first replicate sample of Experiment (b).
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In the second part of this study, Experiment (c), the positions of the infested and
uninfested kernels in each pair were randomised between each sample.  One image
was recorded for each of 51 pairs of one uninfested and one infested kernel.

Methods of image analysis by human inspection
The images obtained in Experiments (b) and (c) were analysed by human inspection.
Images from Experiment (b) were examined by applying a binary threshold (Image
Compact) to highlight any differences in brightness with infestation.  In Experiment
(c), the captured image was examined by a person different from the one who had
randomised the positions of the kernels.  The examiner was prevented from seeing the
samples and did not know the relative positions of the uninfested and infested kernels
under the camera.  The examiner attempted to identify which of the two kernels was
uninfested and which was infested on the basis of the NIR image, using a pc monitor.
As an aid, images from Experiment (c) were enhanced by applying a logarithmic
contrast enhancement (Image Compact).  Contrast enhancement was optimised for the
range of grey levels which occurred in the kernels, by first isolating the two kernels as
the area of interest (AOI).  This was achieved using the irregular AOI image
thresholding option included in the software.

Kernels in Experiment (c) that were classified by inspection of the captured image as
uninfested were placed in one container and kernels classified as infested were placed
in a second container.  At the end of the experiment, the contents of these two
containers were inspected separately by X-ray, to determine the classification
accuracy of human inspection of the NIR image.

Results of image analysis by human inspection
The thresholded images obtained from Experiment (b) are given in Figure 5.  By
qualitative inspection of the figure it can be seen that in the case of 11 out of the 16
samples imaged, the infested kernel displays a markedly larger area of light pixels
than the uninfested kernel [Images (1)-(5), (7), (9)-(11), (13) and (15)].  In the
remaining 5 images, uninfested and infested kernels appear similar.

In Experiment (c), of the 51 pairs of kernels, X-ray examination showed that in 40 the
infested and uninfested kernels had been classified correctly.  This classification
accuracy of 78% confirms that the infested kernels appeared consistently different to
the uninfested kernels when imaged at 981 nm.

6. RECOGNISING HIDDEN INFESTATION BY MACHINE VISION

On completion of the work to develop suitable image capture facilities at both 1202
and 981 nm, confirmed by the results from human inspection of certain of the images,
the main investigation to assess the suitability of machine vision to detect hidden
infestation was started.

Method of image capture at 1202nm
Monochrome digital images at 1202 nm, of resolution 256 x 256 pixels x 8 bit (256
grey levels), were captured using an NIR vidicon tube camera (Find-R-Scope
FJW85400A, FJW Optical Systems; wavelength range to 1800 nm).  This was
connected to a personal computer (Scenic Pro C5, Siemens-Nixdorf; 133 MHz) fitted
with framegrabber (PCImage-SG, Matrix Vision), framegrabber control software
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(Image Compact version 3.0 for Windows) and image cropping software (Adobe
PhotoShop version 5 for Windows).  The camera was fitted with a 17.5-105 mm zoom
lens (Fujinon TV lens) set at approximately 50 mm focal length.  A close-up lens
adapter (Close-up lens CL14058, Fujinon) was attached to the front of the lens.  A
spacer ring of depth 6 mm was positioned between the lens and the camera.  A
bandpass filter with central wavelength 1202 nm (bandwidth 10 nm at half height, 25
mm diameter, image quality; Andover Corporation) was fixed between the lens and
the camera using the built-in filter holder at the back of the lens.  The front of the lens
was positioned approximately 30 cm above the sample.  Lighting was from four
100W standard pearl lightbulbs supplied by mains.  Lighting was reflected onto the
sample via an aluminium foil-covered plastic cylinder (approximately 30.5 cm
diameter x 36 cm height above sample) to give diffuse lighting.  This cylinder
incorporated a hole (10 cm diameter), with the bottom of the circumference level with
the height of the sample.  This allowed the sample to be placed in position under the
camera.  During image capture, the hole was blocked by attaching a sheet of card (11
x 11 cm) covered with aluminium foil.  To improve signal-to-noise ratio, recorded
images were the average of 100 frames.  The image capture set-up is shown in
Figure 1.

Images recorded at 1202 nm
Samples were presented to the camera as single kernels.  Kernels were positioned
with the crease away from camera and with the germ-end oriented downwards in the
captured image.

For Experiment (d), the sample was placed on a 3 mm glass plate (15 x 15 cm) which
was held 8 mm above a ceramic tile of the same dimensions by 4 spacers (Figure 1).
The tile was covered with a sheet of glass fibre paper (Whatman GF/A).  The spacers
allowed the insertion of an infrared blocking filter (5 x 5 cm, KG1 heat absorbing
filter, Optometrics) between the sample and the glass filter paper background.  The
backing material holding the sample was supported by a laboratory jack, adjusted to
give the required distance between sample and camera.  Two images (with and
without infrared blocking filter as background) were recorded for each of 25 replicate
samples of uninfested kernels and 25 replicate samples of infested kernels.
Uninfested kernels were imaged alternately with infested kernels.  One blank image
was recorded for each of the two backgrounds (glass fibre paper or infrared blocking
filter).

For Experiment (f), the sample was placed directly onto the infrared blocking filter.
In this experiment, one image was recorded for each of 75 replicate samples of
uninfested kernels and 75 replicate samples of infested kernels.  Again, uninfested
kernels were imaged alternately with infested kernels.

Method of image capture at 981 nm
Monochrome, 8 bit (256 grey levels), digital images at 981 nm were captured using a
silicon-detector CCD camera (Ikegami ICD-42E, Type F, 1/2 inch) connected to the
same framegrabber arrangement as for imaging at 1202 nm.  Image resolution was
256 x 256 pixels.  The camera was fitted with a 16 mm fixed lens (Computar TV lens,
1:1.4).  A spacer ring of depth 8 mm was positioned between the lens and the camera.
A bandpass filter with central wavelength 981 nm (bandwidth 9 nm at half height, 25
mm diameter, image quality; Andover Corporation) was fixed flush to the front of the
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lens housing and edge-sealed (Blu-Tak).  The front of the lens was positioned
approximately 5 cm above the sample.  Lighting was from four 40W d.c. bulbs fed by
two stabilised d.c. supply units (TSV 30/5CL, Farnell Instruments) connected in
parallel and each producing 25V.  Lighting was reflected on to the sample via an
aluminium foil-covered card cylinder (approximately 20 cm diameter x 20 cm height)
to give diffuse lighting.  To improve signal-to-noise ratio, recorded images were the
average of 100 frames.  The image capture set-up is shown in Figure 3.

Images recorded at 981 nm
Samples were presented to the camera as single kernels.  Kernels were positioned
with the crease away from camera and with the germ-end oriented downwards in the
captured image.  The sample was placed directly onto the infrared blocking filter.

For Experiment (e), one image was recorded for each of 75 replicate samples of
uninfested kernels and 75 replicate samples of infested kernels.  Uninfested kernels
were imaged alternately with infested kernels.

For Experiment (g), wheat kernels of varieties other than Mercia were obtained from
RHM Technology Limited and inspected by X-ray to confirm freedom from insects.
One image was recorded for each of 20 replicate samples of uninfested Mercia,
infested Mercia, uninfested Malacca (AU23), uninfested USA Northern Spring
(AU20), uninfested Canadian, uninfested Shango and uninfested Australian White
kernels.  Images were recorded in rotation, by imaging one kernel of each sample type
in turn.

For Experiment (h), one image was recorded for each of 20 replicate samples of
uninfested kernels and 20 replicate samples of infested kernels.  Uninfested kernels
were imaged alternately with infested kernels.  After imaging by NIR, a reference X-
ray image was recorded for each infested kernel.  Kernel positions were fixed by
mounting the kernels on transparent adhesive plastic sheet supported by a wire frame.
The resulting radiograph was digitised via a flatbed scanner (GT-8500, Epson).
Kernel orientation in the X-ray image was approximately the same as in the NIR
image.

Image analysis by machine vision: the main concept
As soon as the 50 images with the dark background from Experiment (d) became
available, a large number of tests and experiments were carried out to ascertain how
the principles of training, grain normalisation, grain modelling and bright patch
detection could best be implemented.  It rapidly became clear that the degree of
variability of the grain images was so high that normalisation would be especially
difficult to achieve a classification accuracy at least as good as the 78% achieved by
human inspection [Experiment (c)] and with a similar consistency or better.  The fault
in the concept was that taking a large number of grain images and normalising them,
and subsequently averaging them to determine the idealised grain model, was
unachievable, as the high degree of variability meant that a large number of different
idealised grain models would be needed.  This could only be achieved by cluster
analysis in a large parameter space, and indeed would only be successful if many
hundreds and possibly thousands of grain images were available.  The alternative
solution was to derive an idealised model of each grain from the image of that grain
itself.  This approach would have the advantage that it would deal satisfactorily with
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slightly different signals from other grains, however similar they might appear to be.
On the other hand, this approach would not permit any averaging over grains, so the
model could only be improved by adjusting internal algorithm parameters.
Nevertheless, this approach did seem to have something to offer, if only the algorithm
parameters could be adjusted suitably.  Here, again, there would not be enough
training data to institute an automatic means for optimising the parameters, so initially
a pragmatic technique would have to be adopted.  This pragmatic technique would not
have to be totally trial-and-error, as observations could be made for all the grains,
infested and uninfested, to train the eye to understand the situation, and thus guide the
improvement process in a sensible way.  Humans can be very incisive in reacting to
small numbers of training set patterns, whereas machines are far better than humans at
learning from large numbers of training set patterns.  With this approach several
important factors soon came to light:

1. It was consistently found that the rows of pixels in the grain images were
alternately light and dark, as a result of an unknown type of acquisition
problem which could not readily be overcome.

2. Searching for bright patches due to larval infestation proved to be an
unreliable process around the grain boundaries.  It is not entirely clear whether
this was because the larvae are situated entirely within the grains, thereby
preventing the bright patches from appearing at the boundaries, or whether the
algorithms used to model the grain intensities are less accurate in those
locations, thereby reducing sensitivity at these positions.  The general
conclusion is that both of these conditions applied to some extent.

3. The ends of the grains tend to be brighter than the bodies of the grains, and
this meant that it was far less reliable to look for bright patches from larval
infestation at the ends of the grains.

4. Modelling of the grain intensities could be achieved by applying a suitable
noise averaging filter.  While this would in principle be an inadequate
technique, in practice a rather large filtering mask could be used for the
purpose, so that not only was noise eliminated but also moderately fine grain
intensity detail was cut out: in particular, the bright grain patches were largely
eliminated.

5. Any bright patches on the grains would now be revealed by simple
differencing against the model.

6. The brightest patch on any grain could be located by scanning over the active
region of the grain (i.e. the parts encompassed by the exclusion zone defined
below), the brightest patch being taken to be the part of the grain giving the
most information on potential infestation – even if the grain is actually
uninfested.

7. The average intensity of the brightest patch on a grain could be taken as the
sole indicator of information on potential infestation, and all other information
discarded.

In view of the relatively large resolution of the grain images, factor 1 was tackled
quite simply: each image was sampled in alternate pixels in each direction, and this
was carried out four times with horizontal and vertical displacements of 0,0; 0,1; 1,0;
1,1 – thereby obtaining four smaller images.  Only one of these was used.  It might be
possible to use all four to reduce noise further, if higher levels of computation were
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justifiable (though the occasion, and the need, never arose during the remainder of the
project).

Because of factors 2 and 3, an 'exclusion zone' scheme was devised.  First, a mask of
constant width was engineered around, but within, the boundary of the grain (Figure
6).  Second, the ends of the grain were excluded by further modifying the mask so that
it would not extend outside a circular region centred at the centroid of the grain.  The
radius was determined as a factor beta times the radius of a circle of area equal to that
of the grain being considered, beta being one of the parameters to be optimised for
sensitivity (see below).  (It turns out that the centroid location and area of a grain can
be measured accurately and rapidly in these types of image.)

Items 4–7 lead to the main numerical information on each grain permitting it to be
classified as infested or uninfested.  This numerical information also permits the
classifier to be trained for the purpose (Table 2).

Summary of results from Experiment (d)
The degree of variability of the grain images was so high that normalisation would be
especially difficult to achieve to the required level of consistency and accuracy.
Hence each grain had to be normalised individually to derive an idealised model of
each grain from the image of that grain itself.  In addition, each grain had to be
masked to exclude the outermost parts which might be misleading for estimating
infestation.  After this had been achieved, each grain could be compared with its
model, and the most significant bright region in the difference image located: its mean
intensity could then be used as an indicator of infestation.

This basic schema was sufficiently powerful that it was retained in one form or
another right up to the end of the project.

Image analysis by machine vision: training considerations
The maximum patch brightness value was the main piece of information that arose
from every image.  In principle, this only needs to be thresholded in order to
determine whether a grain is infested or not.  If the brightness is above a certain
threshold, the grain is taken to be infested, and otherwise it is taken to be uninfested.
In practice the level of threshold was adjusted by a recognition procedure which was
adjusted for optimality on the given training set, and then the algorithm was ready for
testing on new data.

In statistical pattern recognition applications, it is taken as axiomatic that the system's
accuracy should not be tested on the training set, as the system is taken to be over-
adapted to the training set, giving a higher apparent accuracy that could be illusory.
In fact, there is a further problem, as optimisation can lead to the test set being over-
used, so the system becomes over-adapted to the test set too – with the result that the
final quoted accuracy could be unrealistic.  To overcome this problem, it is necessary,
at minimum, to divide the initial set into a training set, a test set and a validation set.
In our case we took the 150 images in each major experiment and divided it equally
into training, test and validation sets respectively.  The validation set was kept
separate and used only for testing once the method had been optimised by training and
testing using the other two sets.  To improve accuracy further, our final test used the
first 100 images as training data and the final set of 50 images as test data.
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Unfortunately, this sequential approach is liable to error if there is some trend in the
data, such as the camera drifting during acquisition.  In an effort to detect this
possibility, we also carried out a final experiment in which the first 50 and last 50
images were used for training and the second 50 for testing.  This would indicate
whether drift had happened but would not be able fully to allow for it, as the second
set of 50 images had already been used in previous training and could not be taken as
a proper validation set (see above).

Image analysis by machine vision: refining the concept
With Experiment (e), a great many more images became available with which to train
and test the schema already devised.  Before work could begin, it was necessary to
allow for the different type of data in these images.  The sizes of the grains in these
images were considerably increased, and the striations in the images now appeared as
both horizontal and vertical lines, and were no longer restricted to alternate lines, but
could be of higher and indeed variable periodicity.  The fact that the grains now
appeared larger permitted some reduction in size of the images, accompanied by
significant averaging: this was found to eliminate the worst effects of the striations.
This measure made the quality of the derived images similar to those for Experiment
(a), and the effects of the striations became lower than the effects of ordinary noise in
these intrinsically noisy images.  It is instructive to examine the difference images that
occur in these cases after computation of the idealised grain models and subtraction
from the received images – especially for uninfested grains which do not exhibit
bright patches due to larvae (see Figure 6).  In all cases the difference images appear
as pure noise (i.e. entirely random intensities) containing some bright patches, plus
higher intensity patches near the ends of the grains except where these are obscured
by the specially devised masks.  Thus the signal itself consists of noise, and any
averaging to eliminate noise immediately results in loss of signal: it was some time
before this was properly realised and measures to reduce noise were abandoned.

As indicated above, the greater number of images available from Experiment (e) gave
considerable potential for increasing the reliability of grain classification via
additional training and testing.  It proved possible to formulate a set of standard
parameter adjustments that need to be optimised for any new set of grain images.
These parameters were:

1. The threshold value for initial detection of the grain against its dark background.
2. The amount by which the grain mask is shrunk to form the basic exclusion zone.
3. The radial distance parameter beta used in refining the exclusion zone.
4. The length of the filtering template used in generating the grain model.
5. The width of the filtering template used in generating the grain model.
6. The amount by which the grain size is expanded to help eliminate model

boundary effects.
7. The threshold for truncation of the difference signal.
8. The multiplicative factor needed to maintain adequate precision in the patch

brightness.
9. The bright patch size parameter.

All nine of these parameters were adjusted by pragmatic methods to optimise the
classification accuracy (the percentage of kernels classified correctly whether
uninfested or infested): all parameters were needed to guarantee the capability for
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optimisation, but the only way of optimising their values was to test for improvements
in classification accuracy (Tables 3a–d).

In addition to the optimisation of these parameters, numerous tests were made to
determine whether other optimisations were possible.  For example, a number of tests
of circular and elliptical filtering templates (for generating the grain model) were
made, in place of the normal square and rectangular templates, but no gain in
classification accuracy was obtained: in fact, the accuracy was decreased by such
measures.  This result is counter-intuitive, but there is a clear explanation: the
striations in the images were all horizontally or vertically orientated, and having
rectangular templates aligned along these directions would almost certainly help to
eliminate residual effects from the striations.

Further tests were also made to determine whether totally different strategies might be
more effective.  In particular, an adaptive thresholding strategy was tried, as this is
often successful in other applications where dark or light patches have to be detected.
In our previous project on rapid automated detection (Chambers et al.., 1998) a
refined version of this approach was used with great success.  However, in the present
project it was found to be a considerably less effective approach, and testing on it was
soon discontinued.  Conceivably it was confused by the fact that bright patches are
often situated near grain boundaries, and therefore its sensitivity was artificially
limited.

Summary of results from Experiment (e)
After training on the first 50 images and testing on the second set of 50 images,
optimisation led to adjustment of nine important parameters which permitted the
algorithm to be adapted to the grain image data.  As a result, it was found possible to
bring the classification accuracy up to about 81% on the training and test data (the
first 100 images) and to achieve an even higher accuracy of some 84% on the
validation set (the last 50 images).  Further tests using the validation set for the
different purpose of checking on camera drift revealed that the latter was not
especially significant.

Image analysis by machine vision: re-adapting the concept to 1202 nm data
Experiment (f) (recorded at 1202 nm) provided the same number of images as
Experiment (e) (981 nm), and again these could be used to perform more rigorous
training and testing of the algorithm, and optimisation of the nine major parameters
(Tables 4a–c).  However, the software first had to be readjusted to the conditions
pertaining for Experiment (d), namely, eliminating alternate rows and columns of the
input images, to remove the specific type of striations that occur with this type of
image.  While some differences in the parameter values arose because of the need to
adapt to the different sizes of the grains in the two sets of image, the algorithm
required very little modification, and can really be regarded as essentially the same
algorithm.  At this stage, the acquisition modes at the two different wavelengths
merely became corroborative of each other, and it became a question of convenience
which would be chosen for any final implementation of the algorithm.  At the same
time, the fact that the algorithm worked equally well (within the limits shown in
Tables 4a–c) on two sets of data acquired at totally different times on different
cameras added confidence that the system would work on any similar setup in
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different conditions.  Thus the solution was not a freak success but rather one which
was scientifically reproducible under different conditions.
Summary of results from Experiment (f)
In this case, optimisation was carried out on just six parameters, and very similar
classification accuracies (in the region of 80%) to those for the Experiment (e) images
were obtained on the first 100 images.  However, significantly poorer performance
was achieved with the validation set.  Further tests indicated that this can be explained
as being due to significant camera drift occurring by the time the validation set was
obtained.  Camera drift will be most likely when a vidicon camera is used with strong
tungsten lighting which may warm and even overheat the camera.

Image analysis by machine vision: testing the concept on other varieties of wheat
At this stage, the opportunity was taken to examine the success of the method with
varieties of wheat other than Mercia, Experiment (g).  This took the form of
preliminary investigations with five samples of wheat differing widely in their
physical and reflective appearances.  Twenty kernels from each sample, all
uninfested, were imaged to determine whether the algorithm would work.  It was
realised that variations in size, shape or brightness profile might prevent the algorithm
from working properly.  (In many situations in Machine Vision, minor changes in
available image data such as additional noise can prevent shapes from being defined
properly.)  In fact no particular problems arose in applying the algorithm to these new
images.  The next task was to consider its capability for accurately distinguishing
infested grains of these other varieties.

The first real test was to train the algorithm on a set of 20 uninfested + 20 infested
Mercia wheat grains, whose images had been gathered at the same time as those of the
other five varieties, and then to test the trained algorithm on these other varieties.  The
procedure worked but with somewhat disappointing results in some cases (Table 5,
row A).  The reason is that these other varieties were sufficiently different in size,
shape and intensity profile that each needed to be trained individually on sets of
uninfested and infested grains of the same type.  Thus it had proved insufficient to
train on one variety and to test on another.

With no infested training data for the five sets of images, there seemed no possibility
of taking the investigation further.  However, inspection of the images showed that
the five varieties were somewhat narrower than the Mercia variety: it was therefore
decided to test them on a version of the algorithm which had been modified to allow
for the difference in width.  This markedly raised the success rate for these other
varieties but still left the performance disappointingly below that for Mercia wheat
(the only case for which full training data were available).  It was therefore decided to
do a further test.  This was a simulation which involved placing a bright spot on all
the grains and determining whether the algorithm would be able to detect it.  The
intensity and size of the spot were determined by adding the spot to uninfested grains
of the Mercia variety, and adjusting their values to give similar performance (as far as
could be judged) to that obtained by training and testing sets of uninfested and
infested grains.  These tests were applied for both settings of the nine parameters used
in the immediately previous tests.  Both of these tests gave much more encouraging
results, and the one which used parameter values appropriate to narrower grains gave
the best results of all (Table 5, row E).  It appeared that all the varieties should be able
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to respond similarly to the Mercia variety, with success rates of 80% or more, and
thus the algorithm concept seemed to have general applicability for wheat.

In spite of these successes, it has to be emphasised that these latter tests were only
simulations, and the accuracy of the figures still depends on the validity of taking a
bright spot of the type that appears on an infested Mercia grain and transferring it to
these other varieties.  There is no absolute guarantee – just a very strong likelihood –
that bright patches that would appear on infested grains of these other varieties would
have the same degree of visibility and detectability.  However, no reason is known
why this should not be so: we have a high degree of confidence that the algorithm is
soundly based and is equally applicable to all these types of wheat grain.

Image analysis by machine vision: investigating the meaningfulness of the concept
In Experiment (h), a set of 20 uninfested + 20 infested grains was examined by NIR,
and 20 X-ray images were obtained of the infested grains.  We proceeded to train and
test the algorithm on the 20 uninfested + 20 infested grains, using both the normal and
the narrow grain parameter settings (with so few samples it was impossible to carry
out a full optimisation of the algorithm).  The narrow grain settings seemed to be
more appropriate.  However, on examining the difference images produced by the
algorithm, the signal-to-noise ratio was quite low in some cases, and there was some
doubt as to which of the bright patches indicated the most relevant position on the
grain.  Accordingly, we marked some of the bright patch locations as "reliable
position indicators" and others as "unreliable position indicators" in a subjective
judgement.  We judged that out of the 20 images of infested kernels, the location of
the bright patches was reliable in 12 cases.  On examining these locations on the X-
ray images, we found that 7 were well within the boundaries of the larvae within the
grains, 4 were within the cavity once occupied by the larvae, and one was in a
position that seemed to bear no relation to the larval cavity (Table 6).  This last result
is puzzling, though 100% correlation between the insect and the effect it produces on
the surface of the grain (as seen by NIR imaging of the surface) is hardly to be
expected.  (It should also be noted that noise itself can generate a bright patch, and
this may be the mechanism by which uninfested grains sometimes appear to be
infested.)  What is more relevant is that there is a very high correlation between the
location of the bright patch in the NIR image of the kernel and the present or past
location of the larva as revealed by X-ray.  This poses interesting questions about the
exact mechanism for detection in the NIR images.  These results are largely consistent
with the conclusion from the spectroscopic study (Section 7) that the origin of the
observed NIR effect is the loss of starch.

Image analysis by machine vision: estimation of batch infestation
Here we consider the practical consequences of the strategy adopted in this work
leading to classification accuracies in the range 80–85%.  With such an indirect
relation between internal infestation and its detection from properties of the grain in
noisy NIR images, it is difficult to see how the classification of any individual grain
could be made significantly higher.  Even if some new algorithm, optimisation tool or
huge training set became available, reliable classification of more than 90% of grains
would appear unachievable using this approach.  However, in the practical situation,
the detection of infestation in a batch of grain is more important than the classification
of individual grains.  This raises the question of how infestation of a batch is to be
defined.  Taking the basic specification as the requirement to inspect 3 kg of grain in
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3 minutes (Chambers et al., 1998), we can refine this specification to assessing
whether the level of infestation is serious, e.g. ~0.5%.  This level of infestation
corresponds to a 3 kg batch of grain in which each of three gravid female weevils
were to infest 100 kernels.  Such a figure is reasonable given that the female grain
weevil is capable of laying up to 254 eggs (Mallis, 1997).  It is relevant to take 3
gravid females as corresponding to the number of insects which could have gone
unnoticed by a visible light inspection system.  Thus we envisage a system in which a
visible light inspection system and an NIR inspection system work together, and the
former detects external insects while the latter detects internal insects.  If the visible
light inspection system finds insects, there is no need to take account of the NIR
inspection system.  The latter is needed when no insects are detected by the visible
light inspection system to confirm the absence of a developing infestation in which all
the insects are hidden.

Given that 3 kg corresponds to about 60,000 grains, the NIR inspection system needs
to be capable of detecting infestation when some 300 infested grains are present.  This
will be taken as our definition of an infested batch or an infestation.  In what follows
we concentrate on detecting such an infestation.

For practical reasons, the numbers of grain images in both of our main experiments
[Experiments (e) and (f)] are far below 60,000.  In addition, the level of infestation in
these images is substantially different from 0.5%.  These factors mean that the
distributions of patch intensity have to be analysed carefully, and theoretical estimates
made of the relevant probabilities for individual grain detection and batch detection.

If one grain is analysed there will be ~80% probability of accurately detecting
infestation but if several grains are analysed the probability of accurately detecting
infestation will be increased.  For example, if one infested grain is examined, the
chance of missing an infestation is around 0.2; if two such grains are measured the
chance of missing an infestation drops to around 0.22; and for n infested grains the
chance of missing an infestation drops to around 0.2n.  This approach offers the
opportunity to reduce the chance of missing an infestation to arbitrarily low levels
(especially if n ~ 60,000).  However, the situation is complicated by the fact that false
alarms (false positives) appear as well as missed insects (false negatives), and a full
analysis will have to take account of both.  We have carried out analyses based on the
respective per grain false positive and true positive probabilities, P1 and P2, and how
they vary with intensity thresholds.  The simplicity of the 0.2n calculation then breaks
down, and we are left with probabilities P1,P2 coupled with variances proportional to
P1(1 – P1), P2(1 – P2).  To get observable results from these parameters, we must
allow for the different numbers of grains in the two distributions, by multiplying in
the two cases by 59,700 and 300 (59,700 = 60,000 – 300).  What is especially
important is that these analyses are probabilistic, the probabilities having to be
calculated using the variances of the distributions.  For the values of P1, P2 found
experimentally, and assuming Gaussian error distributions truncated at the 3σ limits,
we find that it is not possible to get sufficient information from 60,000 grains to
guarantee detecting 0.5% infestation.  However, as an alternative, we can calculate the
probability of missing a 0.5% infestation in 60,000 grains: thus we find that if the
probability of a false positive infestation is taken to be equal to the probability of a
false negative infestation, the latter probability is around 5.3%.  If on the other hand,
the probability of a false positive infestation is permitted to rise to around 13%, the
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probability of missing an infestation can be made to fall to around 3%.  Thus there is
definite possibility of missing an infestation, but the probability of this is reduced to
quite low levels.  Further analysis of the trade-off is difficult as it has to be carried out
numerically by integrating error functions, and no simple closed formula applies.

Summary of results from Experiment (h)
While classification accuracy for each individual grain was normally around 80%, it
seemed unlikely that the approach could lead to performance above 85-90%.
However, individual grain assessment is of lesser importance than assessment of the
batch of grain.  This work has shown that an overall batch performance in the 95%
category could be achieved by consideration of fairly large numbers of grains
(typically 60,000) in a sample of 3 kg.  The 95% probability of finding a 0.5%
infestation results from the case when the numbers of false positives and false
negatives are equal.  In the practical situation, where a false alarm is much less
important than a missed insect, the number of false positives could be increased,
allowing the probability of finding a 0.5% infestation to rise to around 97%.  Given
the potential for this detection of internal infestation to be entirely non-subjective and
automated, such a result is remarkable and unparalleled by any other method.

Image analysis by machine vision: improving the speed of the algorithms
When initially devised, the algorithm took some 70 ms to process a single grain image
of the type obtained from Experiment (f).  The algorithm was timed on a 350 MHz
Pentium II, and timing accuracy was boosted by timing 1000 repetitions of the
individual sub-processes.  This works out at 70 minutes for a sample containing
60,000 grains, and is 20–30 times slower than the specified figure of 3 minutes.  In
addition, it should be remarked that this takes no account of the image acquisition
time.  However, the latter can essentially be ignored for the present analysis, as any
practical system will have a separate framestore which will operate in parallel with
the computer, so acquisition will not impose any direct load on the computer.

To overcome the speed problem, the algorithm was divided into a number of modules
whose speeds were analysed individually.  It was soon found that most of the
execution times could be halved and that some could be improved further, by quite
simple measures.  (The original form of the algorithm was dictated more by scientific
effectiveness and accuracy of classification than by speed considerations: indeed, the
latter were deliberately suppressed during the development stage.)  The simple
measures adopted involved including more in-line code, preliminary calculation of
relevant parameters rather than repeated estimation when this was not absolutely vital,
and rapidly by-passing background regions of the images.  These measures reduced
the overall execution time to 28 ms.  It was also deduced that the preliminary stage of
averaging for noise (specifically striation) reduction and accompanying reduction of
the sizes of the input images would not be required in any eventual practical system,
as (a) the images would then be acquired at the correct resolution, and (b) better
framestores would be used which would not give rise to striations.  (The latter
constitute an artefact in which some faulty electronic timing mechanism on the
framestore causes alternating lines of high and low intensity, and a vendor would be
able to overcome such problems.)  In addition, display of the final image would not be
required, as logging and classification of the output data would not require the images
themselves to be retained; similarly, output zooming of the images would not be
required.  Elimination of these initial and final processes would cut out another 5 + 1
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= 6 ms, leaving an overall execution time of 22 ms.  This left two processes which
were especially slow because they operated within relatively large windows: these
were the grain modelling filter and the bright patch scanning filter, at 16 and 4 ms
respectively.  Special attention to these processes permitted reduction in their
respective execution times to 3 and 2 ms.  This required re-engineering the overall
design of the algorithm to permit a preliminary reduced size mask to be produced to
restrict the region of application of the final scanning filter.  Such changes of strategy
in algorithm design are often vital to the process of improving timing of complex
inspection procedures.  On the other hand, it should be remarked that such
improvements may only be available if some compromise is taken over performance,
and a tradeoff between performance (i.e. classification accuracy) and speed
commonly exists.  Here, however, there appeared to be no such penalty, and the final
execution time of the algorithm was 7 ms.  There appeared to be no way to cut the
software speed by more than a few percent from this figure, and indeed a great deal
more effort would be needed to cut it to 6 ms, and in that case the algorithm would
become a lot more special purpose and ability to adapt to new conditions would
probably be lost.

Overall, these considerations brought the execution time down to practically useful
levels.  The actual time needed to process 60,000 grains would thereby be reduced to
some 7 minutes on a 350 MHz Pentium II.  Further speedup depends on having a
faster processor, or using several processors.  Much depends on when an
implementation is to be pursued.  If this is to occur in the next six months, the best
option will be to use two 450 MHz Pentiums.  However, if it is to occur in the autumn
of 2001, by then the best option may well be a single 800 MHz Pentium, or its
equivalent.

Integration of the algorithm with the system previously developed for detection of
contaminants in grain images using visible light adds a certain constraint.  In
particular, a connected components analysis of all the objects in an image must be
performed, thereby adding an estimated 1 ms to the total times listed above.  Thus two
500 MHz Pentium II computers would currently be required, or a single 1000 MHz
Pentium, or its equivalent, at some future date.

7. SENSITIVITY AND ORIGIN OF RESPONSE TO INFESTATION

Introduction
To ensure that the differences observed in the NIR images between infested and
uninfested kernels are due to the presence of insects rather than some artefact, a full
NIR spectroscopic study was undertaken.  This had the additional purpose of helping
optimise sensitivity of detection.

Method
Single uninfested and infested kernels (20 replicates each), for both grain weevil large
larvae and pupae, were scanned by reflectance over the whole wavelength range
700nm - 2500nm at 2 nm intervals on an NIRSystems 6500 spectrometer.

An additional study was carried out by repeatedly monitoring kernels at intervals of
two or three days as the insects developed.  For this purpose, three replicate samples
of kernels infested with grain weevil larvae, about 1.5-2.5 weeks after egg-laying,
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were prepared, along with two replicate samples of single uninfested kernels from the
same culture.  The infested kernels selected from the culture were those with signs of
larval presence in their X-radiographs which were just discernible to the naked eye.
Scanning by NIR commenced on the same day as the examination by X-ray.

Results from NIR spectroscopy on single kernels
Wavelength pairs, consisting of a measurement wavelength (to detect changes due to
infestation) and a correction wavelength (to correct for variation in kernel size) were
identified which gave very impressive differences between the uninfested and infested
kernels.  Larval and pupal data were similar so they were combined, giving n=80
total.  Of the very near-infrared wavelength models evaluated, the greatest sensitivity
for spectroscopic detection of internal infestation was achieved by measuring
log1/R(982 nm)-log1/R(1014 nm).  This model discriminated between uninfested
kernels and kernels infested with either large larvae or pupae with 96% classification
accuracy.  One other model, log1/R(972 nm)-log1/R(1032 nm), gave equal detection
performance, but the wavelength 972 nm corresponds to a peak associated with water.
Hence this latter model is likely to be prone to interference from changes in grain
moisture content.  Moving to the very near-infrared improves sensitivity compared to
using a model based on the wavelength 1200 nm identified in previous preliminary
work.  This model, log1/R(1200 nm)-log1/R(1330 nm), gives a classification accuracy
by spectroscopy of 93%.  This is an important advance because imaging below
1100nm could be carried out using an inexpensive silicon detector-based CCD
camera.

The wavelengths 982 nm and 1014 nm both lie within a broad NIR band which
coincides with a published starch band centred at 990 nm.  This band decreased with
infestation.  When examining kernel spectra over the full wavelength range used
(700-2500 nm), starch was implicated as the origin of the response to infestation in 5
out of the 6 wavelength models found.  These observations strongly suggest that at
both 982 nm and 1200 nm, discrimination between uninfested and infested kernels
originates from detection of the loss of kernel starch as a consequence of insect
feeding.

Almost immediately after the start of the repeat scanning experiment, when the
culture was 2–3 weeks after egg-laying, consistent differences between the infested
and uninfested kernels were observed by NIR.  This suggests that the spectroscopic
method has a sensitivity approaching that obtained using X-ray inspection.

Both the work to develop correlation models and the study of change in NIR response
with age of internal infestation have been written up in full and published (Ridgway et
al., 1999).

8. INCORPORATION OF FACILITY TO DETECT HIDDEN
INFESTATION INTO EXISTING MACHINE VISION SYSTEM FOR
CONTAMINANTS EXTERNAL TO GRAIN KERNELS

While it is attractive to attempt to produce an integrated machine which will examine
the grain sample at visible (for external contaminants) and NIR wavelengths (for
hidden infestation), this will still require separate cameras and software analysis
systems for the two cases.  There would appear to be no saving in computer software
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or hardware from combining the two machine vision systems, as they operate on
images of different types and different resolutions.  Additionally, a significant degree
of parallel processing is required to solve both of the computational tasks, so there is
anyway a benefit from employing more than one computer.  Nevertheless, similar
mechanical arrangements can probably be used to form the basis for a combined
system of this type.  For example, a single vibratory (or other) feeder would feed a
single conveyor, and the grains would travel along this, and may also be projected and
photographed in mid-air at the end of the conveyor.

The NIR inspection system requires a high uniform rate of grain presentation,
whereas the visible light system largely ignores the grains and does not need to
scrutinise them at a steady rate.  Hence there are still some open questions on how
best to combine the inspection processes on a single mechanical conveyor system,
though there is also considerable freedom in how it is to be achieved.  Thus much will
depend on the inclinations and capabilities of the vendor who takes on the task of
marketing the overall system.

9. CONCLUSIONS

1. For detecting internal infestation in grain kernels by NIR imaging at 1202 nm,
the best lighting arrangement uses 4 x 100W lightbulbs above a vertical cylinder
of 31 cm diameter with a distance of 30 cm between sample and camera.  An
NIR vidicon camera gave better quality images than CCD cameras using either
silicon or indium gallium arsenide detectors.

2. To detect internal infestation by machine vision assessment of bright patches on
the kernels, it was necessary to overcome the difficulties resulting from the very
low signal-to-noise ratio in the NIR images and the natural variability of the
grains in their brightness, size and shape, by adopting an approach based on
modelling grain intensity profiles.

3. For detecting internal infestation in grain kernels by NIR imaging at 981 nm,
the best lighting arrangement uses 4 x 40W lightbulbs above a vertical cylinder
of 20 cm diameter and with a distance of 5 cm between the sample and camera.
At this wavelength, it was possible to use a silicon-detector CCD camera, which
is cheaper and potentially more reliable than the vidicon camera required for
imaging at 1202 nm.

4. Human inspection of NIR images recorded at 981 nm from pairs of Mercia
variety kernels resulted in successful classification of the infested kernels in
each pair in 78% of the 51 cases, demonstrating that there are consistent
differences due to internal infestation and providing a measure by which the
success of the machine vision approach could be judged.

5. The high degree of variability between the images of grain kernels meant that
the machine vision approach could not average them to determine an idealised
grain model.  Instead it was necessary to derive an idealised model of each grain
from the image of that grain and improve the model only by adjusting internal
algorithm parameters.
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6. Searching for bright patches due to insect infestation proved to be unreliable
around the kernel boundaries and particularly so at its ends.  However, such
searching was successful, once these problematic areas had been excluded, by
comparing the average intensity of the brightest patch of each kernel with a
modelled intensity achieved by applying a noise filter.

7. The large (150) set of images at 981 nm allowed optimisation of the nine
internal algorithm parameters covering brightness threshold values and the sizes
of the exclusion zone, filtering template and bright patch.  As a result,
classification accuracy of about 81% was achieved on the test and training sets
(the first 100 images), and 84% on the validation set (remaining images).  There
was no evidence for camera drift during the recording of these sets.  This is an
improvement on human inspection, where similar classification accuracy was
obtained but the rate of infestation was known.

8. With the large (150) set of images at 1202 nm, optimisation of just six
parameters gave similar classification accuracies of around 80% for the training
and test sets but a poorer performance with the validation set was probably due
to camera drift caused by overheating from the lighting.

9. Preliminary investigations have been undertaken of five samples of wheat
varieties other than Mercia differing in physical and reflective appearances.
Despite their differences in size and grain intensity profiles, classification rates
of 80% or higher were obtained between images of these uninfested kernels and
images of kernels which were simulated as infested by the artificial addition of a
bright spot similar to those seen on infested Mercia kernels.  Thus the algorithm
concept seems to have general applicability to wheat.

10. There is a very high correlation between the location of the bright patch in the
NIR image of the kernel and the present or past location of the larva as revealed
by X-ray.

11. The probability of finding an infestation of 0.5% of the kernels in a batch of 3
kg could be around 97% which, given that this method is entirely non-subjective
and could be automated, is remarkable and unparalleled by any other method.

12. The speed of the machine vision process was increased by a factor of ten by re-
engineering the overall design of the algorithm, spending less time on
background regions of images and eliminating processes which would not be
needed in the practical application.  This reduced the time which would be
needed to process the 3 kg sample to around 7 minutes.  Further reduction to
achieve the target time of less than 3 minutes should be achievable by using
greater processing power.

13. A study over the full NIR spectroscopic range of 700-2500 nm strongly
suggests that at both 982 nm and 1200 nm, discrimination between uninfested
and infested kernels originates from detecting the loss of starch in the kernel as
a consequence of insect feeding.
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14. Repeated scanning of kernels shows that consistent differences are observable
between those which are uninfested and those in which grain weevil eggs were
laid 2-3 weeks previously.  This is almost as soon as such infestation would be
detectable by X-ray.

15. The system developed in this project to detect hidden infestation could share
mechanical arrangements relating to sample presentation with those to be used
in the system for detecting external contamination.  However, the two systems
use different cameras and software analysis and differ in that one scrutinises the
kernels while the other largely ignores them.  There will be few technical
constraints to limit the vendor who develops this invention to a marketable
product bringing its major benefits to the cereal trade.

10. NEEDS FOR FUTURE RESEARCH AND DEVELOPMENT

• Improved (striation-free) image acquisition‡
• Mechanical grain orientation, or its equivalent in software
• Full tests with larger quantities of data, including various varieties of wheat and

other species of grain
• Connected components analysis to cope with multiple objects in any image
• Mechanical integration with visible light inspection system.

11. PUBLICITY

The achievements described in this report represent significant advances in
intellectual property.  This must be protected to encourage commercial exploitation of
the system to be based on it.  Nevertheless, the investigators have been active in the
promotion of their work and have taken care to do this without compromising the
protection.  Once the intellectual property has been protected, the work will be further
promoted in trade journals and primary scientific journals of repute.  The paper
describing work on the origin of the observed effect and optimising the sensitivity has
already been published (Ridgway et al., 1999).
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‡ It will be necessary to ensure that the images are sufficiently noise-free without
repeated grabbing and averaging (though an alternative may be to use several cameras
operating together).
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APPENDIX A: GLOSSARY OF TERMS

For a source book on further information on image analysis and inspection issues see
Davies (1997).

Adaptive thresholding Thresholding in which the threshold value is
automatically adjusted to match the local conditions in
an image

Algorithm Sequence of rules to conduct a mathematical process
Background subtraction Subtraction of the image of the background-only from

the image containing the sample, to improve image
quality

Centroid The centre of gravity of a shape (if the shape were
suspended from this point, it would remain horizontal)

Cluster analysis Analysis of the various samples in a feature space to
group them so that similar samples appear within the
same cluster and dissimilar samples appear in different
clusters

False negative Instance of a failure to locate an object or contaminant
False positive False alarm found when searching for an object or

contaminant
Neural networks Networks of neurones to which input signals are fed and

from which processed outputs emerge that in some way
help to classify the input data.  The basic concept is to
mimic the processing of signals by the neurones in the
brain

Pixel Short form of 'PICture CELL'.  The smallest resolved
area in a digital image, normally taken to be square

Signal-to-noise ratio The factor by which the signal under investigation is
larger than the background noise level.  High signal-to-
noise ratios make signals easier to recognise.  In
difficult cases the ratio may be less than unity.

Template An idealised form of an object which is used for
matching purposes in images.

Thresholding The process of converting a grey-scale image into a
binary image by applying a threshold: during
conversion, any pixel which is darker than the threshold
becomes black, and any other pixel becomes white
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APPENDIX B: PRELIMINARY SPECIFICATION FOR SYSTEM
DEVELOPED IN THIS PROJECT

System description
Kernel feeder: input capacity of 3 kg batches to present to machine as 6600 portions
each of about 0.45 g, including sieve to protect against blockage
Image capture: monochrome or linescan equivalent at 256 x 256 pixels, 8 bit
precision
Computer: two off (or twin) Pentium 500 MHz, or equivalent
Framestore: two frames of 256 x 256 pixels, 8 bit precision, with double buffered
capability, possibly with linescan interface
Output devices: VDU, printer, light and audible alarm

Sample handling
Typical samples: wheat, barley, oats
Capacity: batches of 3 kg in 3 minutes
Dimensions of individual portions imaged: 2.4 x 2.4 cm
Size of sample: 9 ± 2 cereal kernels; no item to be less than 15 pixels from image
boundary, or from adjacent kernels
Image capture rate: 37 images per second.

Performance requirements
Types of contaminant: larval insects internal to kernels
Minimum limit of detection: 60 larval insects in 60,000
Mean false positive and false negative rates: better than 0.3% for batch infestation
Presentation of results: detection of likely contaminants to result in incrementation of
prominent contaminant counter, printout of numbers of contaminant detected; likely
contaminants to be separated from main batch for subsequent inspection.

Operation data
Image analysis procedure: object recognition, logging, interface to
delivery/rejection/sample storage grain handling mechanisms
Calibration mode: preliminary screening of small samples of grain without
contaminants; continual updating during operation
Operating system: Windows NT or other robust system for factory use
Interface: via controlling computer; possible printer output
Operating temperature: 0 - 40 C (preferred less than 30 C to avoid electronic failures)

Technical data
Power specifications: for image analysis expected to be about 240 V, 2-3 kW
Dimensions and weight: for image analysis expected to be about 70 cm (h) x 30 cm (l)
x 30 cm (w)

————————————————————————

All technical specifications will be subject to agreement between vendor and IPR
holders, to ensure that variations (such as use of linescan camera, choice of
framestore, alternative operating systems, etc.) do not interfere with the basic
algorithm concept. It must be noted that the system developed by the IPR holders is a
laboratory development system, which is not itself suitable for field use: thus the
vendor would be expected to suggest his preferred adaptations to the specification laid
down by the IPR holders.
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Delivery to vendor: It is intended that the vendor will receive the following items
under licence from the IPR holders:
1. Relevant know-how and experience.
2. Relevant source code image analysis routines which pass image data and

interpretation data via allocated memory areas.
In addition, the following will be available:
3. Further advice on how to handle unforeseen cases in the input images.
However, item 3 cannot be delivered without charge, as only items 1 and 2 have been
paid for by the HGCA-funded project.

The IPR holders will not deliver executable code, as they will not be familiar with the
vendor's marketable systems. In particular, all responsibility for handling windows-
type (image display) routines will rest on the vendor: this reflects the 'proof of
concept' approach adopted by the IPR holders.

NOTE: The above specification represents our present scientific and technological
thinking. It has been written in good faith but has not yet been vetted or approved
by the RHUL External Relations Department or the CSL staff with similar
responsibility: hence no formal guarantees can be given over it. It is intended solely
to clarify our present intentions with regard to development and marketing of the
system.
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Table 1: Sets of Images Recorded

Expt Wavelength Purpose Samples
a 1202 nm To improve image quality

and provide early data for
machine vision

27 uninfested and 27 infested
kernels imaged in total

b 981 nm To improve image quality 16 uninfested and 16 infested
kernels imaged in total

c 981 nm To determine whether
information in the image is
sufficient

51 uninfested and 51 infested
kernels imaged in total

d 1202 nm To develop main concept
in machine vision

25 uninfested and 25 infested
kernels imaged in total

e 981 nm To refine machine vision
concept

75 uninfested and 75 infested
kernels imaged in total

f 1202 nm To re-adapt machine
vision concept to 1202 nm
data

75 uninfested and 75 infested
kernels imaged in total

g 981 nm To test machine vision
concept on wheat varieties
other than Mercia

20 uninfested (Mercia), 20 infested
(Mercia), 20 uninfested (Malacca),
20 uninfested (USA Northern
Spring), 20 uninfested (Canadian),
20 uninfested (Shango) and  20
uninfested (Australian White)
imaged in total

h 981 nm To test the meaningfulness
of the machine vision
concept
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Table 2  Results for 46 Images, Experiment (d)

grain patch
value

actual
class

result
class

error

1 137 0 0 1
2 179 1 1 1
3 96 0 0 1
4 158 1 1 1
5 134 0 0 1
6 157 1 1 1
7 105 0 0 1
8 168 1 1 1
9 126 0 0 1
10 158 1 1 1
11 119 0 0 1
12 206 1 1 1
13 170 0 1 0
14 147 1 1 1
15 144 0 1 0
16 203 1 1 1
17 110 0 0 1
18 118 1 0 0
19 144 0 1 0
20 173 1 1 1
21 140 0 0 1
22 218 1 1 1
23 140 0 0 1
24 218 1 1 1
25 123 0 0 1
26 158 1 1 1
27 115 0 0 1
28 215 1 1 1
29 110 0 0 1
30 195 1 1 1
31 121 0 0 1
32 179 1 1 1
33 124 0 0 1
34 159 1 1 1
35 127 0 0 1
36 136 1 0 0
37 136 0 0 1
38 140 1 0 0
39 145 0 1 0
40 176 1 1 1
41 137 0 0 1
42 157 1 1 1
43 135 0 0 1
44 157 1 1 1
45 135 0 0 1
46 200 1 1 1

This table shows the results of applying the algorithm to the individual grains for the
images of Experiment (d).  The 46 grains are alternately uninfested (0) and infested
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(1), as indicated in column 3.  The class determined by the algorithm is shown in
column 4 and any errors are indicated by zeros in column 5.
The algorithm was trained on these images using only the information in columns 2
and 3.  The training procedure computes a threshold on the patch brightness value: in
this case the threshold value was 145.  Higher values lead to the 'infested' (1)
classification, and lower values lead to the 'uninfested' (0) classification.
Classification was carried out on all 46 grains, though classification on the training set
is liable to appear too accurate because of over-adaptation to the training set.
The overall accuracy for classification on the training set was 0.848 (39 of the 46
grains classified correctly).
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Table 3a  Parameter Optimisation

parameter value accuracy

I
(train and test)

II
(test only)

-1 0.900 0.720
1 0 0.920 0.760

1 0.820 0.780
– – –

2 0 0.920 0.760
1 0.840 0.760
-1 0.820 0.720

3 0 0.920 0.760
1 0.780 0.760
-1 0.900 0.740

4 0 0.920 0.760
1 0.840 0.680
-1 0.840 0.760

5 0 0.920 0.760
1 0.800 0.760
-1 0.900 0.760

6 0 0.920 0.760
1 0.900 0.760
-1 0.880 0.740

7 0 0.920 0.760
1 0.860 0.760
-1 0.920 0.760

8 0 0.920 0.760
1 0.800 0.800
-1 0.900 0.760

9 0 0.920 0.760
1 0.860 0.780

In this table, the nine parameters have been adjusted relative to their central value by a
scale factor times the value listed in column 2.  Accuracy I refers to the first 50
images; II refers to the second 50 images.
For parameter 2, no reduction was possible, as a negative value would be
meaningless.
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Table 3b  Parameter Optimisation

parameter value accuracy

II
(train and test)

I
(test only)

-1 0.740 0.820
1 0 0.780 0.840

1 0.820 0.780
– – –

2 0 0.780 0.840
1 0.760 0.860
-1 0.760 0.760

3 0 0.780 0.840
1 0.780 0.720
-1 0.740 0.900

4 0 0.780 0.840
1 0.820 0.780
-1 0.740 0.760

5 0 0.780 0.840
1 0.760 0.840
-1 0.780 0.840

6 0 0.780 0.840
1 0.780 0.840
-1 0.820 0.800

7 0 0.780 0.840
1 0.800 0.840
-1 0.780 0.840

8 0 0.780 0.840
1 0.800 0.820
-1 0.760 0.860

9 0 0.780 0.840
1 0.820 0.840

Accuracy I refers to the first 50 images; II refers to the second 50 images.
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Table 3c  Results for First 100 Images, Experiment (e)

grain patch
value

actual
class

result
class

error grain patch
value

actual
class

result
class

error

1 184 0 0 1 51 182 0 0 1
2 217 1 1 1 52 199 1 0 0
3 203 0 0 1 53 134 0 0 1
4 233 1 1 1 54 198 1 0 0
5 152 0 0 1 55 180 0 0 1
6 237 1 1 1 56 247 1 1 1
7 174 0 0 1 57 163 0 0 1
8 207 1 1 1 58 177 1 0 0
9 191 0 0 1 59 178 0 0 1

10 241 1 1 1 60 235 1 1 1
11 168 0 0 1 61 182 0 0 1
12 228 1 1 1 62 238 1 1 1
13 172 0 0 1 63 169 0 0 1
14 248 1 1 1 64 210 1 1 1
15 179 0 0 1 65 188 0 0 1
16 238 1 1 1 66 209 1 1 1
17 169 0 0 1 67 172 0 0 1
18 204 1 0 0 68 204 1 0 0
19 183 0 0 1 69 145 0 0 1
20 228 1 1 1 70 210 1 1 1
21 231 0 1 0 71 210 0 1 0
22 217 1 1 1 72 198 1 0 0
23 178 0 0 1 73 174 0 0 1
24 222 1 1 1 74 208 1 1 1
25 184 0 0 1 75 210 0 1 0
26 216 1 1 1 76 247 1 1 1
27 166 0 0 1 77 185 0 0 1
28 212 1 1 1 78 208 1 1 1
29 240 0 1 0 79 191 0 0 1
30 211 1 1 1 80 254 1 1 1
31 204 0 0 1 81 236 0 1 0
32 255 1 1 1 82 255 1 1 1
33 188 0 0 1 83 197 0 0 1
34 255 1 1 1 84 196 1 0 0
35 205 0 0 1 85 190 0 0 1
36 214 1 1 1 86 160 1 0 0
37 194 0 0 1 87 188 0 0 1
38 232 1 1 1 88 220 1 1 1
39 178 0 0 1 89 215 0 1 0
40 244 1 1 1 90 241 1 1 1
41 185 0 0 1 91 172 0 0 1
42 215 1 1 1 92 255 1 1 1
43 202 0 0 1 93 177 0 0 1
44 253 1 1 1 94 239 1 1 1
45 205 0 0 1 95 175 0 0 1
46 255 1 1 1 96 228 1 1 1
47 182 0 0 1 97 214 0 1 0
48 242 1 1 1 98 213 1 1 1
49 190 0 0 1 99 199 0 0 1
50 190 1 0 0 100 236 1 1 1
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This table shows the results of applying the algorithm to the individual grains for the
images of Experiment (e).  The 100 grains are alternately uninfested (0) and infested
(1), as indicated in column 3.  The class determined by the algorithm is shown in
column 4 and any errors are indicated by zeros in column 5.
The algorithm was trained on the first 50 images using only the information in
columns 2 and 3.  The training procedure computes a threshold on the patch
brightness value: in this case the threshold value was 205.7.  Higher values lead to the
'infested' (1) classification, and lower values lead to the 'uninfested' (0)classification.
Classification is carried out on all 100 grains, though classification on the training set
is liable to appear too accurate because of over-adaptation to the training set.
The overall accuracy for classification on the training set is 0.92, and for classification
on the test set is 0.76.  Taking a weighting of 1:2 between these figures gives a result
of about 0.81.  (Taking the test set result is unnecessarily harsh, as indicated on
examining the result of training on the second 50 images and testing on the first 50
(see Tables 3a,b), which gives the respective figures 0.780, 0.840.)
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Table 3d  Summary of Performance

accuracy
training set test set training testing

I II 0.920 0.760
II I 0.780 0.840

I+II III 0.820 0.854
I+III II 0.850 0.771

I refers to the first 50 images; II refers to the second 50 images.  Some faulty images
had to be eliminated from the analysis, so the third set III contained only 48 images.
It is gratifying to note the high performance when training on I+II and testing on III –
the validation set which had not been looked at earlier.
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Table 4a  Parameter Optimisation

parameter value accuracy
I

(train and test)
II

(test only)
-1 0.740 0.700

1 0 0.760 0.820
1 0.820 0.800
-1 0.760 0.840

2 0 0.760 0.820
1 0.800 0.800
-1 0.800 0.820

3 0 0.760 0.820
1 0.740 0.740
-1 0.760 0.860

4 0 0.760 0.820
1 0.740 0.760
-1 0.780 0.760

5 0 0.760 0.820
1 0.760 0.820
-1 0.780 0.800

9 0 0.760 0.820
1 0.780 0.820

In this table, the nine parameters have been adjusted relative to their central value by a
scale factor times the value listed in column 2.  Accuracy I refers to the first 50
images; II refers to the second 50 images.
Note that the rigorous optimisation of the Experiment (d) data led to reduced need for
optimisation of the Experiment (f) data: in particular, parameters 6–8 did not have to
be optimised further in this case.
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Table 4b  Parameter Optimisation

parameter value accuracy

II
(train and test)

I
(test only)

-1 0.740 0.760
1 0 0.860 0.760

1 0.800 0.820
-1 0.840 0.760

2 0 0.860 0.760
1 0.780 0.800
-1 0.820 0.800

3 0 0.860 0.760
1 0.780 0.780
-1 0.820 0.760

4 0 0.860 0.760
1 0.780 0.720
-1 0.780 0.740

5 0 0.860 0.760
1 0.840 0.760
-1 0.800 0.760

9 0 0.860 0.760
1 0.840 0.740

Accuracy I refers to the first 50 images; II refers to the second 50 images.
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Table 4c  Summary of Performance

accuracy
training set test set training testing

I II 0.760 0.820
I+II III 0.810 0.652
I+III II 0.720 0.761

I+II+III – 0.740 –

I refers to the first 50 images; II refers to the second 50 images.  Some faulty images
had to be eliminated from the analysis, so the third set III contained only 46 images.
It is believed that the poor performance when training on I+III and I+II+III indicates
that significant camera drift occurred by the time III was obtained, and that this
explains the poor test performance when training on I+II and testing on III.
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Table 5  Results of Tests on the Other Varieties of Wheat

0 1 2 3 4 5
A 0.800 0.800 0.550 0.500 0.800 0.400
B 0.700 0.800 0.800 0.500 0.750 0.700
C 0.750 0.850 0.700 0.650 0.825 0.625
D 0.700 0.875 0.800 0.800 0.850 0.825
C' 0.800 0.900 0.750 0.700 0.875 0.675
E 0.800 0.900 0.800 0.800 0.875 0.825

Key: 0 = Mercia (uninfested and infested), 1 = Malacca (AU23), 2 = USA Northern
Spring (AU20), 3 = Canadian, 4 = Shango, 5 = Australian White.

(a) Columns 0–5 refer respectively to the Mercia control and to the five alternative
varieties of wheat.

(b) A and B present the results of the preliminary test on the six varieties, A using
the standard parameter settings, and B using the narrow grain settings.

(c) C and D present the results of the 'bright spot' test on the six varieties, C using
the standard parameter settings, and D using the narrow grain settings.

(d) In A and B the algorithm was trained on the control sample, for which
uninfested and infested grains were available.

(e) In C and D the algorithm was trained individually on each of the six varieties,
using uninfested grains and taking the uninfested grains with added bright spot
as the infested grains. (The true infested grains available for the control sample
were excluded from these tests.)

(f) In all cases the results were obtained by testing on the training set because of
lack of data.  Thus the results may be slightly higher than they should be: more
realistic figures may be obtained by subtracting 0.025 from each figure.  The
figure of 0.025 was derived from Experiments (e) and (f) by comparing the
accuracies from test sets on which training had been undertaken with those from
test sets which had not been used for training.

(g) The bright spot was assigned an intensity of 20 in C and 10 in D, as the value 20
would have given absurdly high success rates in D.  To provide a better
comparison, the bright spot intensity values should have been adjusted to give
the same results for the control sample in cases A and C (they already give the
same values for B and D).  C' shows the results for C modified in this way.

(h) Ideally, when examining the results in B and D, the control sample results
should be taken as those in A and C, as the latter reflect the proper training for
the wider grains of the control sample.  (If C' is used instead of C, this problem
does not arise.)

(i) Following notes (g) and (h), E shows the results obtained by taking the best
parameter setting between C' and D.  It is seen that all the varieties give similar
results, and in no case is any worse than the (normalised) control sample: the
available evidence indicates that the algorithm will perform well with all
varieties of wheat
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Table 6  Locations of the Bright Patch for Infested Grains, Experiment (h)

item x y r reliability position
2 -8 1 8 low
4 0 11 11 good on larva
6 -8 6 10 low
8 0 10 10 low
10 0 -11 11 uncertain
12 0 11 11 good on larva
14 2 10 10 good on larva
16 1 7 7 good on cavity
18 -4 -10 10 good on larva
20 6 -2 6 uncertain
22 -1 -10 10 good on cavity
24 6 -6 8 good on larva
26 9 5 10 good no relation
28 -5 -7 8 good on larva
30 7 -2 7 uncertain
32 -6 8 10 low
34 -4 -9 9 good on cavity
36 -2 9 9 uncertain
38 6 -2 6 good on larva
40 0 10 10 good on cavity

In this table, the items are the infested grains, which are the even ones in the set of 40.
x and y are the coordinates of the centre of the brightest patch found in the difference
image, relative to the centroid of the grain.  r is the distance from the centroid,
accurate to the nearest pixel.  Reliability was ascertained by checking visually
whether the patch was prominent or likely to have arisen by chance placement of a
few high intensity pixels.  This final column indicates whether the bright patch
corresponded to the position of the larva or the hole left behind by it, as seen in the X-
ray images: this check was only made for the images in which good reliability of the
bright patch was recorded.
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Figure 1: Image capture set-up, 1202 nm
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Figure 2: Example images from Experiment (a), to demonstrate image quality.  Top
row of each image: three uninfested kernels.  Bottom row of each image: three
infested kernels.  Images, clockwise from top left: glass fibre paper background
(background-subtracted), infrared blocking filter background (background-
subtracted), glass fibre paper background (background-subtracted; contrast-
enhanced), infrared blocking filter background (background-subtracted; contrast-
enhanced)
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Figure 3: Image capture set-up, 981 nm
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Figure 4: Image obtained from first sample [uninfested kernel (left) and infested
kernel (right)], Experiment (c), as an example of image quality at 981 nm
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   (1)      U           I    (2)     U             I    (3)      U             I    (4)     U             I

   (5)     U           I    (6)      U            I    (7)      U            I    (8)        U            I

   (9)     I             U    (10)   I               U    (11)   I              U    (12)    I             U

   (13)   I            U    (14)   I             U    (15)     I            U    (16)    I            U

Figure 5: Thresholded images from Experiment (c). U=uninfested, I=infested.  Image
numbers are arbitrary.  See text for discussion of individual images.
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Figure 6.  Samples of grains from Experiment (d) processed by the new algorithm: (1)
a normal grain, correctly interpreted, (2) an infested grain, correctly interpreted, (3) a
normal grain, incorrectly interpreted, (4) an infested grain, incorrectly interpreted and
(5) an infested rather extreme grain, correctly interpreted.  Note the shape and
position of the automatically inserted exclusion zone for each grain.  For clarity, the
difference image is enhanced within the exclusion zone, while the part of the original
image outside the exclusion zone has reduced brightness.  The four dots arranged in
the form of a diamond show the region of most likely infestation, irrespective of
whether any infestation was present.


	Lighting was from four 40W standard pearl lightbulbs supplied by mains.  Images were recorded at 981 nm using a silicon-detector CCD camera (Ikegami ICD-42E, Type F, ½ inch) at a resolution of 256 (height) x 521 (width) pixels.  Materials used in the ima

